
© ACM 2017
This is the author's version of the work. It is posted here by permission of ACM for

your personal use. Not for redistribution. The definitive version is available at
ACM: https://doi.org/10.1145/3151759.3151830

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. 

@inproceedings{Wurster2017_12FactorTOSCA,
author    = {Michael Wurster and Uwe Breitenb{\"u}cher and 

Michael Falkenthal and Frank Leymann},
title     = {Developing, Deploying, and Operating Twelve-Factor

Applications with TOSCA},
booktitle = {Proceedings of the 19\textsuperscript{th} 

International Conference on Information Integration 
and Web-based Applications \& Services},

year      = {2017},
pages     = {519--525},
publisher = {ACM},
doi = {10.1145/3151759.3151830}

}

:

Michael Wurster, Uwe Breitenbücher, Michael Falkenthal, and Frank Leymann. 

2017. Developing, Deploying, and Operating Twelve-Factor Applications

with TOSCA. In Proceedings of the 19th International Conference on Information 

Integration and Web-based Applications & Services, Salzburg, Austria, December 4-

6, 2017 (iiWAS’17), 519-525. https://doi.org/10.1145/3151759.3151830

Institute of Architecture of Application Systems, 
University of Stuttgart, Germany

{wurster, breitenbuecher, falkenthal, leymann}@iaas.uni-stuttgart.de

Developing, Deploying, and Operating
Twelve-Factor Applications with TOSCA

Michael Wurster, Uwe Breitenbücher, Michael Falkenthal, and Frank Leymann

Institute of Architecture of Application Systems

https://doi.org/10.1145/3151759.3151830


Developing, Deploying, and Operating Twelve-Factor
Applications with TOSCA

Michael Wurster, Uwe Breitenbücher, Michael Falkenthal, and Frank Leymann
Institute of Architecture of Application Systems, University of Stuttgart, Germany

[lastname]@iaas.uni-stuttgart.de

ABSTRACT
With Cloud Computing, offering and delivering services over the In-
ternet became commonly feasible. This has impacts on application
design, development as well as on the automation of application pro-
visioning. The Twelve-Factor App is a methodology that documents
best practices for building and operating scalable, maintainable,
and portable web-based SaaS applications. However, a standards-
based approach to build, release, and run Twelve-Factor Apps inde-
pendently of individual cloud providers and specific deployment
technologies is missing, which quickly leads to a vendor or tech-
nology lock-in. In this paper, we introduce a guideline to establish
a development process using the Twelve-Factor App methodology
together with the OASIS standard TOSCA to address this issue. We
show how to realize the twelve factors with TOSCA and how the
approach supports portability and automated deployment.

CCS CONCEPTS
• Software and its engineering→ Software creation andman-
agement; • Computer systems organization;

KEYWORDS
Cloud Computing, Twelve-Factor App, TOSCA
ACM Reference Format:
Michael Wurster, Uwe Breitenbücher, Michael Falkenthal, and Frank Ley-
mann. 2017. Developing, Deploying, and Operating Twelve-Factor Appli-
cations with TOSCA. In iiWAS ’17: The 19th International Conference on
Information Integration and Web-based Applications & Services, December
4–6, 2017, Salzburg, Austria. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3151759.3151830

1 INTRODUCTION
Cloud Computing is widely used in industry and academia [29].
As a service consumer, one can benefit from Cloud Computing
properties such as pay-per-use pricing, scalability, and self-service
capabilities [14]. These properties also influence modern software
development processes: The shift from traditional, non-iterative
software development processes, such as the waterfall model, to
iterative processes and agile methodologies, such as Scrum, is one

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
iiWAS ’17, December 4–6, 2017, Salzburg, Austria
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5299-4/17/12. . . $15.00
https://doi.org/10.1145/3151759.3151830

driver to let companies strive for a continuous software delivery
model [24, 26]. Furthermore, due to software development method-
ologies from DevOps, where the barrier between development and
operations people is eliminated [11], this shift facilitates companies
to establish practices and automated processes to deploy applica-
tions rapidly and continuously into their production environments.
These aspects, including the automated deployment and manage-
ment of applications, are key enablers to reduce costs of their oper-
ation [14]. However, these properties also have a significant impact
on how applications need to be built in order to utilize the ad-
vantages provided by Cloud Computing: Applications need to be
designed and developed considering certain requirements, such as
scalability, maintainability, and portability. Developing applications
fulfilling these requirements and being able to be provisioned and
managed automatically is a non-trivial process, especially when
independent components are developed in different teams that
are distributed among different countries. The Twelve-Factor App
emerged as a methodology that documents best practices for ef-
ficiently building such applications [28]. This methodology gets
more and more adopted in industry and provides well-described
best practices to achieve the properties for cloud-based deployments
named above.

However, a standardized technology- and cloud provider-agnostic
Twelve-Factor approach is missing. Thus, establishing the Twelve-
Factor App as a methodology in the development process quickly
leads to a long-term upfront commitment to a deployment technol-
ogy and cloud provider. This means in effect that we lock-in our
development process to a certain vendor using its own mechanisms,
technologies, and processes to deploy and manage applications. A
change in the used provider is, therefore, associated with high costs
to adapt the application deployment process together with high
migration costs for moving the complete production deployment
to the new vendor’s environment. Moreover, in DevOps-oriented
organizations, it is a frequent practice to use a separate cloud plat-
form for development and integration testing than for production.
As a result, such organizations need experts for all used platforms
and may need operation engineers to manage the different envi-
ronments, which results in an immense complexity.

As there are currently only partial solutions, we tackle these
issues by applying the Topology and Orchestration Specification for
Cloud Applications (TOSCA) [20] to this problem: In this paper, we
present a guideline describing how to use the TOSCA standard for
developing Twelve-Factor Apps independently of concrete cloud
providers and deployment technologies. We elaborate how each
step in the development process of a Twelve-Factor App can be re-
alized with TOSCA. Moreover, our guideline does not only focus on
development but also tackles the challenges of automating deploy-
ment and management for different environments and deployment

https://doi.org/10.1145/3151759.3151830
https://doi.org/10.1145/3151759.3151830


iiWAS ’17, December 4–6, 2017, Salzburg, Austria Michael Wurster et al.

stages. The approach significantly reduces the complexity of devel-
opment and operations as only one single, generic technology has
to be used, which supports integrating arbitrary cloud providers
and deployment technologies. The proposed guideline intends to
help novices and non-experts of TOSCA to realize Twelve-Factor
Apps using this standard by explaining how TOSCA’s concepts can
be used in an efficient manner to realize the twelve factors.

The remainder is structured as follows: Section 2 motivates the
paper and gives an overview of TOSCA. Section 3 presents our
guideline for using TOSCA to develop and operate Twelve-Factor
Apps. Section 5 concludes and discusses future work.

2 BACKGROUND, MOTIVATION, AND TOSCA
This sections presents background information about Twelve-Factor
Apps and TOSCA. Moreover, we introduce a motivating scenario.

2.1 The Twelve-Factor App Methodology
The Twelve-Factor App methodology establishes a shared vocab-
ulary and a set of best practices for building applications that are
self-contained, stateless, with explicitly declared and isolated de-
pendencies, where configuration can be supplied through the envi-
ronment [28]. Thus, the methodology enables the development of
scalable, maintainable, and portable cloud-native applications.

Having such a methodology to build cloud-native applications is
indeed a key part. The Twelve-Factor methodology can be applied
to applications written in any programming language targeting
any kind of cloud provider, whereas a Platform as a Service (PaaS)
offering suites best for such applications since the complete mid-
dleware stack and runtime environment is offered and managed
by the cloud provider [14]. Hence, it is reasonable that the authors
of the Twelve-Factor methodology formulated these best practices
based on their experience in development, operation, and scaling
applications during their work on the Heroku platform—a PaaS
cloud platform based on a managed container system1.

However, nowadays, a lot more different PaaS offerings and
technologies are provided and are widely used in the industry. For
example, besides Heroku and among others, there is Google’s App
Engine2 and AWS Elastic Beanstalk by Amazon Web Services3.
Furthermore, Cloud Foundry4 has emerged as a cloud provider in-
dependent development and deployment platform. By using Cloud
Foundry, applications can be deployed to cloud providers support-
ing this platform without changing the application’s deployment
mechanism nor the application’s source code. Thus, Cloud Foundry
provides a solid base for building portable applications.

As a result, there are many different deployment technologies
and cloud providers available that offer capabilities required for
building, deploying, and operating applications following the Twelve-
Factor methodology. However, using one of these technologies di-
rectly leads to a lock-in: Development, deployment, and operation
processes are tightly coupled to the capabilities, features, and APIs
offered by these technologies [4]. For example, if automated deploy-
ment scripts are used to provision new instances of an application,

1Heroku: https://www.heroku.com
2Google App Engine: https://cloud.google.com/appengine
3AWS Elastic Beanstalk: https://aws.amazon.com/de/elasticbeanstalk
4Cloud Foundry: https://www.cloudfoundry.org

these scripts are tightly coupled to the APIs, data formats, features,
and invocation mechanisms of the employed technology [6]. Thus,
if a company decides to use one of these technologies or providers,
a later change is directly associated with a huge effort for adapting
the corresponding deployment models and scripts, which results in
very high costs and requires immense technical expertise. Moreover,
a private or public cloud deployment often ends up in a hybrid cloud
deployment due to new laws, new available services, or changing
compliance requirements. Thus, often multiple providers and tech-
nologies have to be integrated for a single deployment, which is
a complex, error-prone, and time-consuming challenge. By using
the TOSCA standard as basis for the development and operation
of a Twelve-Factor App, we can increase the level of portability
and exchangeability of technologies [3]. With TOSCA we can use
a complete vendor-neutral ecosystem enabling us to build portable
and interoperable cloud applications, independent of any cloud
provider-specific API, domain-specific language (DSL), or deploy-
ment technology. However, how to use the concepts of TOSCA to
realize the twelve factors of the methodology is highly non-trivial.
Therefore, we present a detailed guideline in this paper.

2.2 Motivating Scenario
A typical scenario in modern software development companies,
influenced by DevOps [11] and the architectural style of microser-
vices [13], could be formulated as follows: A software development
team has the charter to develop and operate the front-end and
back-end of a social blogging site. In the upcoming development
iterations, the back-end application should be re-implemented and
deployed to a public cloud provider. For the sake of brevity we
simplify the functional and non-functional requirements for the
back-end: (i) As a user, I want to use a RESTful HTTP API to list,
create, and update articles, to comment on articles, and to follow
other users, (ii) a follower request is published through a PubSub
(Publish-Subscribe) message broker to the application, (iii) the appli-
cation component must scale horizontally, and (iv) must be portable,
so that it can be deployed to different execution environments. As
a company guideline, Amazon AWS is chosen as cloud platform
for newly developed applications. Moreover, since the team mainly
consists of Java experts, the team decides to utilize the widely used
Spring Framework and the framework additives of Spring Boot5.
However, the team has to deal with a legacy front-end application
which serves the user interface and is hosted on-premise with Open-
Stack. In such a scenario, the rapid provisioning and deployment of
applications becomes a vital part [11]. On the one hand, the team
has to be able to adapt computing resources quickly and in an auto-
mated manner. On the other hand, it has to be able to quickly and
automatically deploy the application components to different exe-
cution environments, which implies a close collaboration between
software developers and operation engineers [9].

For deploying the back-end application into production, AWS
CloudFormation6 can be used, which is a DSL supported by AWS
for deploying applications on different AWS services. To automat-
ically deploy the front-end application, expertise on OpenStack
is required. On top of that, a third technology is required as the

5Spring Boot: https://projects.spring.io/spring-boot
6AWS CloudFormation: https://aws.amazon.com/cloudformation



Developing, Deploying, and Operating Twelve-Factor Applications with TOSCA iiWAS ’17, December 4–6, 2017, Salzburg, Austria

(SQLConnection)

User: USTUTT
Password: %2348!4

PaaS
(ElasticBeanstalk)

[…]

Backend Application
(SpringBoot2.0.0App)

(hostedOn)

User: USTUTT
Password: %2348!4

DBaaS
(AmazonRDS)

[…]

Backend Database
(MySQL5.7DB)

(hostedOn)

DA DA

[…]

Hypervisor
(OpenStack)

[…]

Frontend Application
(PHPSymfony2.4App)

DA

User: USTUTT
Password: %2348!4

PubSub Middleware
(AmazonSNS)

Name: new_subscription

Subscription-Topic
(Topic)

(TopicConnection)(TopicConnection)

[…]

Ubuntu
(Ubuntu16.04)

(hostedOn)(hostedOn)

(hostedOn)

Figure 1: Motivating scenario modeled as simplified TOSCA Topology Template.

overall orchestration layer to combine and control the deployment
of these two applications. Furthermore, as the back-end application
needs to be properly tested, there must be the possibility to deploy
the whole application landscape into the company’s local test in-
frastructure. In order to achieve this, we have to employ different
kinds of deployment technologies that require different kinds of
expertise. Moreover, if the company decides to change the cloud
provider or to combine services of different providers, then addi-
tional deployment technologies have to be used and integrated [6].
Thus, we end up in the issues discussed previously.

2.3 The TOSCA Standard
The Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) is an OASIS standard that enables modeling, pro-
visioning, and management of cloud applications [2, 20]. TOSCA
enables modeling the structure of an application to be deployed
as a directed graph called Topology Template, which consists of
Node Templates (vertices) and Relationship Templates (edges). Node
Templates represent components of an application such as virtual
machines, web servers, or software components. Relationship Tem-
plates represent the relations between nodes, e. g., that a node is
hosted on or connects to another node. Node and Relationship Tem-
plates are typed: Node Types and Relationship Types are reusable
classes that define the semantics of the corresponding template. For
example, a Node Template can be of type “ApacheTomcat” while a
Relationship Template can be of type “hostedOn”, which specifies
that the source node shall be hosted on the target node. Node Types
define properties that can be used to configure the deployment. For
example, the “ApacheTomcat” Node Type may specify the proper-
ties “HTTP Port” and “Username”, which are filled with concrete
values by the Node Template. Node and Relationship Types may
also specify Management Operations, e. g., a “create” operation for
installing the Tomcat web server. Implementation Artifacts (IAs)
provide the implementation for these operations, for example, the
“create” operation could be implemented as a Shell script. TOSCA
standardizes a Lifecycle Interface [21], which specifies that the op-
erations create, configure, start, stop, and delete are executed in this
order for each Node Template. Thus, based on this Lifecycle Inter-
face, arbitrary installation and configuration logic can be specified.

Deployment Artifacts (DAs) implement the application’s function-
ality and can be attached to Node Types and Node Templates, e. g.,
a DA of the “ApacheTomcat” Node Type could be the binary files of
the web server. Based on these model elements, the entire structure
of an application can be described. Moreover, Node Types can be
defined arbitrarily, thus, any provider and platform technology can
be specified as component within a topology in a generic manner.

Management Plans are executable process models implementing
management functionality for the specified topology. For example,
a Management Plan can be modeled for the initial provisioning of
the application—these provisioning plans can be generated auto-
matically based on the Topology Template [4]. Management Plans
are recommended to be implemented as workflows [16, 20], for
example, using BPEL [19]. Thus, based on this concept, arbitrary
management functionality can be automated by such plans.

TOSCA specifies an exchange format called Cloud Service Archive
(CSAR) to package Topology Templates, Node and Relationship
Types, IAs and DAs, plans, and all required files into one self-
contained archive. This package is portable across different standards-
compliant TOSCA Runtime Environments, which are used to deploy
and manage applications modeled in TOSCA.

Figure 1 shows a simplified Topology Template of the motivat-
ing scenario. It shows the production environment consisting of a
Node Template for the legacy front-end application of Node Type
“PHPSymfony2.4App” hosted on-premise on OpenStack and the
back-end application of Node Type “SpringBoot2.0.0App”, hosted
on a Node Template of type “AWSElasticBeanstalk”—the PaaS of-
fering of Amazon AWS. Both applications are connected through a
topic which is in turn hosted on “Amazon SNS”, Amazon’s managed
PubSub service. In addition, as persistence layer, the back-end appli-
cation uses Amazon’s database service “RDS” to host a MySQL 5.7
database, which is a fully managed SQL cloud data store. The ap-
plication and database Node Templates also specify Deployment
Artifacts: The DA of the application contains the respective im-
plementation while the DA of the database specifies the database
schema. Thus, this example shows that arbitrary types of software
components and their deployment relationships can be described
in a generic manner. Furthermore, Figure 2a depicts how the back-
end application can be modeled and deployed to a different cloud
provider by exchanging the respective Node Types, for example,



iiWAS ’17, December 4–6, 2017, Salzburg, Austria Michael Wurster et al.

User: USTUTT
Password: %8758!1

PaaS
(GoogleAppEngine)

[…]

Backend Application
(SpringBoot2.0.0App)

(hostedOn)

User: USTUTT
Password: %2348!4

DBaaS
(GoogleCloudSQL)

[…]

Backend Database
(MySQL5.7DB)

(hostedOn)

(SQLConnection)

DA DA

(a) Google Cloud Platform Deployment

User: USTUTT
Password: %8758!1

PaaS
(GoogleAppEngine)

[…]

Backend Application
(SpringBoot2.0.0App)

(hostedOn)

User: USTUTT
Password: %2348!4

DBaaS
(AmazonRDS)

[…]

Backend Database
(MySQL5.7DB)

(hostedOn)

(SQLConnection)

DA DA

(b) Multi-Cloud Deployment (GCP/AWS)

Figure 2: Cloud Provider Deployment Alternatives of the Backend

Node Types supporting Google Cloud Platform. Even more, a devel-
oper can choose Node Types of different cloud providers in order
to realize multi-cloud deployments as shown in Figure 2b. There-
fore, TOSCA provides a suitable basis to automate deployments
independently from concrete technologies.

3 A GUIDELINE FOR REALIZING THE
TWELVE-FACTOR APPS WITH TOSCA

This section presents a guideline for realizing Twelve-Factor Apps
using TOSCA as a vendor-neutral and technology-agnostic ap-
proach. Each section first describes one factor of the methodology
and explains afterwards how the respective factor can be realized
using the TOSCA standard following our guideline.

3.1 Codebase
A Twelve-Factor App must have one codebase, which is tracked
in a version control system, such as Git or Subversion. This is a
crucial factor because it must act as the single source of truth of
your application’s source code. The content of TOSCA’s exchange
format—Cloud Service Archive (CSAR)—shapes this codebase. A
CSAR repository could contain multiple Topology Templates ref-
erencing application components (via Node Types) in a certain
version as dependencies and targeting different deployment en-
vironments, such as development, testing, and production, as il-
lustrated in Figure 3 (due to reasons of space, we only show the
back-end part). By creating Topology Templates for certain target
environments, we realize the “one codebase, many deploys” para-
digm of the Twelve-Factor App. Doing so, we can maintain in one
codebase the description how an application can be deployed to
any number of environments. In fact, a Topology Template often
contains multiple components (i. e., Node Types) and is the com-
position of a deployable application system. Node Types can be
application-specific, but more often they characterize a common
behavior that can be shared across multiple CSAR codebases. Such
Node Types are practically dependencies for the CSAR codebase
and are individually tracked in separate source code repositories.

3.2 Dependencies
Twelve-Factor applications must declare all dependencies explicitly
and completely. All dependencies must be scoped only for a single
application by bundling them together to an autonomous artifact be-
fore deploying to an execution environment. Such applicationsmust

never assume that any dependency is provided implicitly or system-
wide in the deployment environment. Furthermore, dependencies
of one component must be isolated from other component depen-
dencies on the same computing resource. This factor is important to
reduce the possibility of failed deployments where assumptions to a
computing environment cannot be fulfilled. With the CSAR format,
a self-contained exchange and packaging format is intended by the
TOSCA standard itself. Thus, by creating Topology Templates, we
can explicitly declare all dependencies (Relationship Templates)
between all modeled components (Node Templates) in the topology
model. With TOSCA we can, for example, represent which compo-
nent is hosted on what computing resource and which runtimes
must be installed on this resource through modeling Relationship
Templates of type requires. Furthermore, we can model which com-
ponent needs to connect to another component. Thereby, a TOSCA
runtime is able to provision the application as modeled including
all required dependencies. Moreover, TOSCA also provides the con-
cept of Requirements and Capabilities, which can be used to model
what a certain Node Template requires or provides, respectively. On
top of that, TOSCA also enables specifying incomplete Topology
Templates, in which Node Templates specify Requirements that
have to be fulfilled during provisioning. TOSCA Runtimes are capa-
ble of resolving these dependencies by injecting appropriate Node
Templates into the Topology Template during deployment that
fulfill the specified Requirements by matching Capabilities, which
ensures that a complete Topology Template, i. e., an autonomous
artifact is processed and deployed. Thus, TOSCA provides exten-
sive support for handling dependencies by the two possibilities
of (i) packaging all required dependencies into the CSAR to get a
self-contained exchangeable archive and (ii) explicitly specifying
required dependencies that are not contained in the CSAR but have
to be fulfilled during deployment.

3.3 Config
An application’s configuration differs between different deployment
environments, such as development, staging, or production. There-
fore, configuration parameters must neither be checked into the
application’s source code repository nor be hardcoded as constants
on programming language level. A naive approach with TOSCA
is to maintain configuration files that are attached as DAs to the
respective Node Templates. But this violates this factor since all
configuration data should be stored in a separate place than the
actual codebase, which is especially critical if configuration values



Developing, Deploying, and Operating Twelve-Factor Applications with TOSCA iiWAS ’17, December 4–6, 2017, Salzburg, Austria

CSAR
Production Topology of the BackendDevelopment Topology of the Backend

Application
(SpringBoot2.0.0)

Database
(MySQL5.7DB)

DBaaS
(AmazonRDS)

PaaS
(ElasticBeanstalk)

DA DAApplication
(SpringBoot2.0.0)

Database
(MySQL5.7DB)

Ubuntu
(Ubuntu16.04)

DA DA

Hypervisor
(OpenStack)

…
…

Figure 3: The “one codebase, many deploys” paradigm with TOSCA.

contain passwords. A better approach, and the recommended best
practice of the Twelve-Factor App methodology, is to store config-
uration values in environment variables that are populated during
deploy. With TOSCA, properties can be specified and attached to
Node Templates to specify such environment variables. Thus, we
can create arbitrary Node Types that specify an install operation,
which is implemented by an IA that populates any property as a
separate environment variable when deploying the respective com-
ponent. Moreover, TOSCA provides support to specify that a prop-
erty’s value shall be requested from the user during deployment
(get_input, see TOSCA’s Simple Profile [21]). Thus, the system
engineer can specify properties that shall be used as environment
variables in two ways: (i) by providing the concrete value directly in
the Node Template for information that is allowed to be contained
in the codebase or (ii) by specifying that the property value shall
be requested from the user when starting the deployment. Using
this approach ensures that critical configuration information, such
as login credentials, are never committed to the codebase as they
are only provided when starting the deployment.

3.4 Backing Services
Any service an application consumes over the network as part
of its normal operation is called a backing service by the Twelve-
Factor App methodology, such as database or messaging services.
Whereby it must not make any difference whether the service is
locally available or provided by a third party provider. They are just
attached resources, which are made available at the deployment of
the application. This factor provides the development team great
flexibility in, e. g., using a local installation of a database during
development and one offered by a cloud provider for production.
In TOSCA, we can express such attached resources with Node
and Relationship Templates. We can use the Relationship Type
“connectsTo” to model that one Node Template needs to connect to
another one. Using the properties of the target Node Template that
represents the backing services enables specifying all information
required for connecting to the service. During deployment, these
properties aremade available as environment variables to the source
Node Template to enable connecting it to the backing service. For
achieving this, the mechanisms described in Figure 1 can be used
for setting this configuration.

3.5 Build, Release, Run
In order to deploy a codebase into an execution environment, three
stages need to be passed: (i) build, (ii) release, and (iii) run. The
build stage transforms the codebase into a self-contained, exchange-
able, and executable package. In TOSCA, at this stage we build the
CSAR archive containing all required resources for a deployment.
The release stage takes the output of the build stage and combines
it with a configuration for a certain execution environment. This
means to supply all unspecified properties of Node Templates. Fi-
nally, the run stage, also called runtime, runs the components in a
certain execution environment by starting the required computing
resources and processes. A TOSCA runtime uses the CSAR and the
supplied properties to allocate computing resources, to populate
environment variables, and to start and wire application processes.

3.6 Processes
An application must be executed in one or more stateless processes.
This means that all data types that relate to state of an application
have to be stored in backing services, typically in databases or blob
storage resources. This is a vital factor since stateless applications
are more robust, easier to manage, and generally easier to scale.
In TOSCA, we can define the minimum and maximum number of
instances to be created when instantiating a certain Node Template.
Whereby, “instance” could mean in effect that a Node Template
could launch a number of isolated processes. This implies that
all DAs attached to Node Templates must be build individually
according to the Twelve-Factor App methodology.

3.7 Port Binding
Twelve-Factor applications must expose services to other parties
by binding to a port, and listening to requests coming in on that
port. The idea is, like any other backing service you are consuming,
that your application also interfaces to other applications using a
simple URL. For web-based applications, this means, for example,
that static HTML files must be served with a web server, such as
Apache HTTP Server7, or Java-based applications be served with
a Servlet container, such as Apache Tomcat8. This implies that,
based on this concept, applications can become backing services

7Apache HTTP Server: https://httpd.apache.org
8Apache Tomcat Server: http://tomcat.apache.org



iiWAS ’17, December 4–6, 2017, Salzburg, Austria Michael Wurster et al.

of other applications, whether HTTP or any other communication
protocol is used. In TOSCA we could bundle the runtime environ-
ment directly into each DA if required, depending on your style
of deployment. For PaaS deployments, this approach makes less
sense since with such a deployment model one already gets an
appropriate runtime provided. However, with TOSCA we model
and deploy our application to all kinds of deployment models. Any
port configuration can be supplied through properties of a Node
Template. We model in the Topology Template what kind of service
is exposed on a certain port, however, how the service is provided
is hidden and an implementation detail of the Deployment Artifact.

3.8 Concurrency
In Twelve-Factor Apps, concurrency is realized through the process
model, where processes become first class citizens in that context.
This means that a service provided by an application is served by
one or more processes. This factor generally eases the way to scale
an application by just starting a new process on the same or on a
different resource. As stated in Section 3.6, in TOSCA we can model
the minimum and maximum number of instances, e. g., processes,
in the Topology Template that is instantiated by a runtime.

3.9 Disposability
Disposability is achieved by designing an application elastic and
ephemeral, meaning in effect that we can adjust the application’s
performance by dynamically adding or removing computing re-
sources whenever the workload of components change. On the one
hand, we have to consider to start application processes in seconds
and, on the other hand, we have to make sure that application pro-
cesses are gracefully shutdown if they are no longer required. In
turn, applications also should be robust against crashing. Meaning,
if components crash they should always be able to start up again
cleanly. Such management activities are expressed in TOSCA using
Management Plans. They represent activities that can be executed
during runtime of an application. By definingManagement Planswe
can, e. g., specify how to start and stop instances of a certain part of
the topology. Again, this implies that all attached DAs are designed
and implemented according the Twelve-Factor App methodology.
Moreover, with TOSCA we can model Management Plans that de-
scribe which resources should scale, what a scaling plan should
actually do, and when a scaling plan should be triggered.

3.10 Dev/Prod Parity
The idea of this practice is to close the gap between execution
environments and keep them as similar as possible. This means,
for example, to use the same backing services, the same versions
of software components and libraries, and the same deployment
techniques. However, there can be gaps in different areas: (i) the
time gap, because it may take days or weeks until a source code
change reaches the production stage, (ii) the personnel gap, due
to a strict separation of developers and operations engineers, and
finally, (iii) the tools gap, basing on the fact that developers may
use totally different technology stacks in contrast to the running
or targeted production environment. Whereas each area is equally
important, we are focusing on the tooling area in this work. As the

codebase practice states, the attached DAs in our Topology Tem-
plate have to be the same for all deployment environments. With
TOSCA we can create multiple Topology Templates representing
different execution environments based on the same DAs. Then, we
can package those Topology Templates into one ore more CSARs
depending on our requirements. Furthermore, as depicted in Fig-
ure 2, with TOSCA we can easily target another cloud provider as
execution environment by choosing different Node Types for the
infrastructure layer. Finally, a TOSCA runtime then lets us launch
a certain environment at any point in time once required.

3.11 Logs
Logs represent the behavior of a running application instance. As
instances can be long-running, log entries must be treated as a
continuous stream of time-ordered events. A Twelve-Factor App
writes its logging information unbuffered to stdout. To implement
this with TOSCA, each DA has to comply with this requirement.
Moreover, an IA can be used that implements the TOSCA Lifecy-
cle Interface to configure a log file adapter component, such as
Logstash9, to forward these information to a centralized log aggre-
gation component. Moreover, lots of PaaS providers automatically
enable the forwarding of log entries supplied through stdout into
their log analytics service, such as Amazon CloudWatch10. As these
PaaS offerings can be used as Node Types, this factor is nowadays
often supported natively by the employed components.

3.12 Admin Processes
Administration tasks in Twelve-Factor Applications must be run
in isolated one-off processes on identical environments as the pro-
duction. This is an important factor so that management tasks are
not executed manually, for example, directly against a database,
or run from a developer’s local terminal window. This is where
the orchestration part of TOSCA comes into play and shows its
strengths. Using TOSCA, we can specify Management Plans for
such admin processes and activities. We can define multiple plans on
Node Templates or Node Types to enable all kinds of management
use cases—from simple ones, like start, stop, or restarting instances,
to more complex ones, like executing migration or scaling work-
flows for certain parts of the application topology.

4 RELATEDWORK
The Twelve-Factor App methodology was formulated based on
experiences in building SaaS-based web applications and emerged
to a widely accepted methodology in industry [28]. The principles
are formulated as generic as possible so that they can be applied
to any programming language and any type of service. With the
advent of microservices [13, 18] and the driver to build cloud-native
applications [15], the principles identified in the Twelve-Factor App
methodology became the de-facto standard [1, 7].

With Docker and other container virtualization technologies we
can achieve a certain level of portability and can manage applica-
tions in a loosely coupled and isolated manner with clear dependen-
cies [10, 17, 22, 23, 30]. Cloud Foundry, as provider-independent
development and deployment platform also provides a solid base for
9Logstash: https://www.elastic.co/products/logstash
10Amazon CloudWatch: https://aws.amazon.com/de/cloudwatch



Developing, Deploying, and Operating Twelve-Factor Applications with TOSCA iiWAS ’17, December 4–6, 2017, Salzburg, Austria

building portable cloud applications. Such a PaaS platform supports
the Twelve-Factor App methodology and provides the required
functionality and features to implement the principles and best
practices [8, 25]. However, to operate cloud-native applications and
to eliminate vendor lock-in, a portable deployment and manage-
ment approach is required [12]. Furthermore, there are a challenges
with such approaches to implement multi-cloud or hybrid cloud
deployments. The concepts of TOSCA tackle these issues by provid-
ing an extensible type system that allows the modeling of arbitrary
types of application components and relationships. Using TOSCA,
we can model such applications on top of multiple technology
stacks, such as Cloud Foundry, Docker, or even on top of bare metal
servers, possibly distributed over multiple cloud providers.

It is also possible to use other management tools, such as Ansi-
ble or Chef, instead of TOSCA for the automated deployment of
computing resources. Furthermore, cloud platform specific tools
such as AWS CloudFormation or OpenStack Heat allow as well to
create, configure, modify, and terminate cloud computing resources.
Moreover, the orchestration approach by Terraform11 could be uti-
lized which provides tooling to operate on a higher abstraction
level. Having a provider-agnostic DSL, Terraform enables develop-
ers to deploy applications to multiple cloud providers, including
multi-cloud provisioning scenarios. However, TOSCA is an official
standard and tooling support is improving steadily. In contrast to
these approaches, TOSCA enables a holistic, technology-agnostic
approach based on topology models and a corresponding graphical
notation [5]. These topology models are highly adaptable in a way
that components can be easily interchanged, such as that we can
combine many technology stacks with many cloud provider offer-
ings. For example, by using an official standard, a company is able to
exchange a TOSCA-compliant runtime with another one [27]. Thus,
with TOSCA an orchestration and provisioning layer is provided
which is completely vendor-independent and technology-agnostic
in order to develop Twelve-Factor applications.

5 CONCLUSION AND OUTLOOK
In this paper, we described a guideline to develop, deploy, and op-
erate Twelve-Factor application systems by means of the OASIS
standard TOSCA. We can significantly increase the level of porta-
bility and exchangeability having positive impact on operation
costs of an application system by combining the Twelve-Factor
App methodology with TOSCA’s interoperable metamodel. The
proposed guideline supports developers and operation engineers in
building portable and interoperable Twelve-Factor Apps. This pa-
per showed that all of the twelve factors can be implemented with
TOSCA and thus TOSCA is very well suited to develop and operate
Twelve-Factor Apps. We showed that TOSCA is vendor-neutral
and technology-agnostic, something that many other approaches,
technologies, and platforms cannot provide. Therefore, this enables
to develop, package, and deploy Twelve-Factor Apps as well as to
automate operation and management processes.

As future work, we aim to incorporate concepts from DevOps
to our approach, e. g., to establish a build and deployment pipeline
to continuously integrate and deliver such applications by making
use of TOSCA.

11Terraform: https://www.terraform.io

Acknowledgments. This work is partially funded by the BMWi
project SePiA.Pro (01MD16013F) as part of the Smart ServiceWorld.

REFERENCES
[1] Kapil Bakshi. 2017. Microservices-based software architecture and approaches.

In 2017 IEEE Aerospace Conference. IEEE, 1–8.
[2] Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. 2014. TOSCA:

Portable Automated Deployment and Management of Cloud Applications. Springer.
[3] Tobias Binz, Gerd Breiter, Frank Leymann, and Thomas Spatzier. 2012. Portable

Cloud Services Using TOSCA. IEEE Internet Computing 16, 03 (May 2012).
[4] Uwe Breitenbücher et al. 2014. Combining Declarative and Imperative Cloud

Application Provisioning based on TOSCA. In International Conference on Cloud
Engineering (IC2E 2014). IEEE.

[5] Uwe Breitenbücher, Tobias Binz, Oliver Kopp, Frank Leymann, and David
Schumm. 2012. Vino4TOSCA: A Visual Notation for Application Topologies
based on TOSCA. In On the Move to Meaningful Internet Systems: OTM 2012
(CoopIS 2012). Springer.

[6] Uwe Breitenbücher, Tobias Binz, Oliver Kopp, Frank Leymann, and Johannes
Wettinger. 2013. Integrated Cloud Application Provisioning: Interconnecting
Service-Centric and Script-Centric Management Technologies. In On the Move to
Meaningful Internet Systems: OTM 2013 Conferences (CoopIS 2013). Springer.

[7] Jürgen Cito, Philipp Leitner, Thomas Fritz, and Harald C. Gall. 2015. The making
of cloud applications: An empirical study on software development for the cloud.
In 10th Joint Meeting on Foundations of Software Engineering. ACM.

[8] Tim Evko. 2015. The 12-Factor Apps Methodology: Implement It in
Your Own Apps with AppFog. (2015). https://www.sitepoint.com/
12-factor-apps-methodology-implement-apps-appfog

[9] Martin Fowler. 2014. Microservice Prerequisites. (2014). https://martinfowler.
com/bliki/MicroservicePrerequisites.html

[10] Kelsey Hightower. 2015. 12 Fractured Apps. (2015). https://medium.com/
@kelseyhightower/12-fractured-apps-1080c73d481c

[11] Jez Humble andDavid Farley. 2010. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Pearson Education.

[12] Nane Kratzke and Rene Peinl. 2016. ClouNS - a Cloud-Native Application Refer-
ence Model for Enterprise Architects. In 20th International Enterprise Distributed
Object Computing Workshop (EDOCW). IEEE.

[13] James Lewis and Martin Fowler. 2014. Microservices - A definition of this new
architectural term. (2014). http://martinfowler.com/articles/microservices.html

[14] Frank Leymann. 2009. Cloud Computing: The Next Revolution in IT. In 52nd

Photogrammetric Week. Wichmann Verlag.
[15] Frank Leymann, Uwe Breitenbücher, Sebastian Wagner, and Johannes Wettinger.

2017. Native Cloud Applications: Why Monolithic Virtualization Is Not Their
Foundation. Springer.

[16] Frank Leymann and Dieter Roller. 2000. Production Workflow: Concepts and
Techniques. Prentice Hall PTR.

[17] Adrian Mouat. 2015. Using Docker: Developing and Deploying Software with
Containers. O’Reilly Media, Inc.

[18] Sam Newman. 2015. Building Microservices. O’Reilly Media, Inc.
[19] OASIS. 2007. Web Services Business Process Execution Language Version 2.0.
[20] OASIS. 2013. Topology and Orchestration Specification for Cloud Applications

(TOSCA) Version 1.0.
[21] OASIS. 2015. TOSCA Simple Profile in YAML. (2015).
[22] Cody A. Ray. 2015. How to Build 12 Factor Microservices

on Docker. (2015). https://www.packtpub.com/books/content/
how-to-build-12-factor-design-microservices-on-docker-part-1

[23] Ryan Schultz. 2015. Twelve-Factor Apps and Containers. (2015). http://blog.grio.
com/2015/08/twelve-factor-apps-and-containers.html

[24] Ken Schwaber and Mike Beedle. 2002. Agile Software Development with Scrum.
Prentice Hall Upper Saddle River.

[25] Stephen Spector. 2015. Using Twelve-Factor App Methodologies in Cloud
Foundry. (2015). https://community.hpe.com/t5/Grounded-in-the-Cloud/
Using-Twelve-Factor-App-Methodologies-in-Cloud-Foundry/ba-p/6710871

[26] Kalpana Sureshchandra and Jagadish Shrinivasavadhani. 2008. Moving from
Waterfall to Agile. In Agile 2008 Conference. IEEE, 97–101.

[27] Johannes Wettinger, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. 2016.
Streamlining DevOps automation for Cloud applications using TOSCA as stan-
dardized metamodel. Future Generation Computer Systems 56 (2016).

[28] Adam Wiggins. 2012. The Twelve-Factor App. (2012). https://12factor.net
[29] Qi Zhang, Lu Cheng, and Raouf Boutaba. 2010. Cloud computing: state-of-the-art

and research challenges. Journal of Internet Services and Applications 1, 1 (2010).
[30] Noah Zoschke. 2015. Modern Twelve-Factor Apps

With Docker. (2015). https://medium.com/@nzoschke/
modern-twelve-factor-apps-with-docker-55dd92c832b3

https://martinfowler.com/bliki/MicroservicePrerequisites.html
https://medium.com/@nzoschke/modern-twelve-factor-apps-with-docker-55dd92c832b3
https://medium.com/@kelseyhightower/12-fractured-apps-1080c73d481c
https://www.packtpub.com/books/content/how-to-build-12-factor-design-microservices-on-docker-part-1
https://www.sitepoint.com/12-factor-apps-methodology-implement-apps-appfog
https://www.packtpub.com/books/content/how-to-build-12-factor-design-microservices-on-docker-part-1
https://community.hpe.com/t5/Grounded-in-the-Cloud/Using-Twelve-Factor-App-Methodologies-in-Cloud-Foundry/ba-p/6710871
http://blog.grio.com/2015/08/twelve-factor-apps-and-containers.html
https://community.hpe.com/t5/Grounded-in-the-Cloud/Using-Twelve-Factor-App-Methodologies-in-Cloud-Foundry/ba-p/6710871
https://www.sitepoint.com/12-factor-apps-methodology-implement-apps-appfog
https://12factor.net
https://medium.com/@kelseyhightower/12-fractured-apps-1080c73d481c
https://medium.com/@nzoschke/modern-twelve-factor-apps-with-docker-55dd92c832b3
http://martinfowler.com/articles/microservices.html
https://martinfowler.com/bliki/MicroservicePrerequisites.html
http://blog.grio.com/2015/08/twelve-factor-apps-and-containers.html

	Abstract
	1 Introduction
	2 Background, Motivation, and TOSCA
	2.1 The Twelve-Factor App Methodology
	2.2 Motivating Scenario
	2.3 The TOSCA Standard

	3 A Guideline for Realizing the Twelve-Factor Apps with TOSCA
	3.1 Codebase
	3.2 Dependencies
	3.3 Config
	3.4 Backing Services
	3.5 Build, Release, Run
	3.6 Processes
	3.7 Port Binding
	3.8 Concurrency
	3.9 Disposability
	3.10 Dev/Prod Parity
	3.11 Logs
	3.12 Admin Processes

	4 Related Work
	5 Conclusion and Outlook
	References

